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1. Introduction

Holographic approach in analyses of QCD as an application of the AdS/CFT correspon-

dence [1] is not only a way to study strong coupling dynamics of QCD in a perturbative

way, but also giving a hope to find a more comprehensive and deeper understanding of

hadron physics and holography [2] itself. The developments in this research subject are

still in the middle of the way to go beyond the large N approximation and to include

dynamical quarks and various interactions. A lot remain to be studied and to be revealed

important and intriguing.

Among many gravity models holographically dual to QCD, proposed so far (see for ex-

ample [3, 4]), the Sakai-Sugimoto model [5] is one of the most successful models at present.

An important feature of the model is that, in terms of D-brane geometries, it explains the

spontaneous chiral symmetry breaking occurring at strong coupling in the real QCD. This

is a typical example where D-branes in string theory provide a new interpretation of known

physics — any new interpretation may help to create new techniques for analyzing physical

systems. Sakai and Sugimoto predicted various important phenomenological parameters

associated with hadron physics, such as vector/scalar meson spectra, interactions among

them, chiral Lagrangian with calculable coefficients, skyrmions, and so on. The comparison
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to the measured observable values is quite successful, the values turned out to be within

20 − 30% error [5].

The Sakai-Sugimoto model deals with massless QCD, thus the chiral symmetry is

unbroken at weak coupling. The spontaneous chiral symmetry breaking is realized in

terms of D-branes, and massless pions appear as fluctuations on the D-branes. In the

real world, the quarks are massive and the chiral symmetry is explicitly broken, thus the

pions are pseudo Nambu-Goldstone bosons. To study the contribution of quark masses to

hadron physics, we have to introduce quark masses to the holographic QCD model. Since

the holographic QCD model describes hadron physics, we aim in this paper to provide

a D-brane construction to introduce the pion mass in the Sakai-Sugimoto model, and to

see how the hadron dynamics described in the massless model is modified in the presence

of the pion mass. A smooth limit to the Sakai-Sugimoto model shows the existence of a

corresponding chiral perturbation giving the pion mass.

In the Sakai-Sugimoto model, left-handed (or right-handed) quarks live on the inter-

section point of “gauge” Nc D4-branes and “flavor” Nf D8-branes (or D8-branes). The

quark mass term mixes the left and the right, thus we need to bend the D8-branes and the

D8-branes and connect them even at the weak coupling regime, i.e. even as a D-brane con-

figuration in the flat spacetime background. This can be achieved by introducing a throat

configuration of D8-D8 branes [6] and placing D4-branes inside the throat, which will be

studied in section 2. Our result is that the throat surface is located outside the near-horizon

region of the D4-branes and furthermore the pions are somehow still massless. Then we

consider a particular limit of this brane configuration, to make the D8-brane throat be flat

and parallel to the Nc D4-branes, and put it inside the near horizon region. In this limit,

the pion becomes massive as expected, however it is too heavy (with no massless pion

limit), and so this brane configuration is not phenomenologically viable. In section 3, we

consider a different approach, which is introduction of a bound D4-brane charge on the D8-

and the D8-branes of the Sakai-Sugimoto model. It is given by a Yang-Mills instanton on

angular S4 of the probe D8-brane worldvolume in the near-horizon background geometry.1

This breaks the chiral symmetry explicitly, and with this, the value of the pion mass is

successfully tuned to be the realistic one.2 We work out fluctuation analysis of the probe

D8-brane in the background geometry, following the computations in [5]. We find that

vector meson spectrum obtained in [5] is not significantly affected by the introduction of

the pion mass. We discuss a possible chiral perturbation corresponding to this introduction

of the D4-brane charge.

2. Toward a holographic dual of QCD with massive quarks: some attempts

In the Sakai-Sugimoto model, the pure Yang-Mills part of the QCD is realized as a four-

1In the paper [7], Yang-Mills instantons are introduced as candidates for the baryons. In their context,

the instanton is particle-like in four-dimensional spacetime in which the QCD is realized. On the other

hand, in our model, the instanton will not be localized in any direction of this four-dimensional spacetime.
2The contribution of the instanton do not give the η′ mass. For the origin of the η′ mass, see the first

reference of [5].
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dimensional effective theory on Nc D4-branes compactifying one spatial direction by an S1

with imposing the anti-periodic boundary condition for fermionic fields. They introduce Nf

D8-branes and Nf D8-branes which are located at distinct points in the S1 direction, and

an open string stretching from the D4-branes to the D8- or D8-branes provides a chiral or

anti-chiral fermion in four dimensions. The chiral U(Nf )L ×U(Nf )R symmetry is realized

as a direct product of gauge symmetries on the Nf D8- and Nf D8-branes. In the gravity

dual description, where the D8- and D8-branes can be treated as probes in the Nf ≪ Nc

limit, the D8- and D8-branes have to connect with each other smoothly in the near horizon

geometry of the corresponding D4-brane. This is interpreted as the spontaneous chiral

symmetry breaking in QCD, and they show the existence of Nambu-Goldstone bosons

associated with the spontaneous chiral symmetry breaking, i.e. pions. However since the

D4-branes intersect with the D8- and D8-branes, the quark masses are zero and then the

pions are exactly massless.

We expect that a quark becomes massive if we can deform the D8- and D8- brane

configuration in such a way that they do not intersect with the D4-branes in the flat

spacetime. Although it is an unstable configuration, it is known that there is such a static

configuration in which the parallel D8- and D8-branes are connected by a throat with

the size almost equal to the asymptotic distance between the D8- and D8- branes [6], see

figure 1. We then place D4-branes inside the throat. Because the D8- and D8-branes no

longer intersect with the D4-branes, and also because the chiral symmetry is explicitly

broken due to the fact that the D8- and D8-branes are already connected, the masses of

the quarks are expected to be non-zero and proportional to the size of the throat radius,

thus the pions become pseudo Nambu-Goldstone bosons.3

The holographic dual gravity description for this D-brane throat should be a new D8-

brane probe configuration in the same D4-brane geometry. In the flat spacetime, for a

fixed distance between the D8- and the D8-branes, there are two static configurations as

we have already mentioned: the flat D8- and D8-branes, and the throat configuration.

The former corresponds to the original Sakai-Sugimoto model, while the latter is what we

are interested in. Thus, we expect that when the D4-branes are replaced by their curved

background geometry, we would have two probe configurations, one for the former and the

other for the latter. However, the analysis in [5] shows that, at least in the near-horizon

region, there is a unique probe configuration with the asymptotic distance between the D8-

and the D8-branes fixed to be the anti-podal points in the S1.4

In order to find the missing solution, we study the probe D8-brane configuration in

the full D4-brane geometry without taking the low energy limit, i.e. the near horizon limit.

Now the boundary condition for the D8-brane solution is imposed at the asymptotically

3We notice that a tachyonic mode appears in the scalar field on D8-branes, although this mode does not

correspond to the pion.
4In the paper [8], a one-parameter family of the D8-brane probe configuration in the near-horizon

geometry of the D4-branes is obtained. The parameter is the asymptotic distance between the D8- and

the D8-branes in the S1. The D8- and D8-branes still intersect with the D4-branes in the weak coupling

picture (i.e. in the flat spacetime), thus they have massless Nambu-Goldstone bosons in the strong coupling

picture.
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D4 D8

Figure 1: The D4-branes are in the

throat of the D8 D8.

Figure 2: The D4-brane location is shifted, and the

large throat limit is taken.

flat region. Then we find two probe D8-brane solutions for the same anti-podal boundary

condition: one extends into the near horizon geometry and the other does not. The former

solution corresponds to the D8-brane considered in Sakai-Sugimoto model, and we identify

the latter as what we are looking for. Although the fields on D8-branes do not decouple

with bulk gravity modes and string massive modes (since we do not take the near horizon

limit), we may expect those modes do not break the chiral symmetry and the pions are

still massless if the quarks are massless. Conversely if there are no massless pions, we may

understand that the chiral symmetry is explicitly broken due to the non-zero quark mass

terms. We studied the fluctuation on this D8-probe configuration to check if pions become

massive. On the contrary to our expectation from the D-brane picture in the flat space,

we find the pions are still massless (see more detail in appendix A).

One possible explanation for this situation is that without taking the near horizon

limit, above picture just fails to capture the strong dynamics of the dual QCD. However it

may also be understood in the following way. The amount of difference in energy from the

D-brane configuration in [5] is finite, which might imply that we are looking at an excited

state in the same theory (where quarks are massless) and not a vacuum of a different

theory. The operator corresponding to the scalar field on the D8-brane, which determines

the probe D8-brane configuration, is not a quark bi-linear (the quark mass term), but

a four fermi term [9] which can connect left- and right-handed quarks without breaking

the chiral symmetry. Nevertheless, this is still counter-intuitive, because the open string

stretching between the D8- and the D4-branes provides a quark field and the energy of

this open string is proportional to the distance between these two sets of D-branes. In

order to see this property more appropriately, we come to consider a limit of the above D-

brane configuration: taking the large radius limit of the throat, and placing the D4-branes

inside the throat not at the center, but at some fixed distance from the throat surface. We

“magnify” the throat region of the D8-branes, while keeping the distance to the D4-branes

(see figure 2). After taking this limit the D8-branes are placed parallel to the D4-branes.

Then it is clear that the quarks are massive, since both the D4- and the D8-branes are flat

and separated by a non-zero distance. Although there is no chiral symmetry because of

the non-zero masses for the quarks, we expect there are pseudo Nambu-Goldstone bosons

if the distance between the D4- and the D8-branes is much smaller than the QCD scale.
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Figure 3: The D8-brane configuration localized at the anti-podal points on the S1.

However this limit causes a problem. The five dimensional theory before compacti-

fication is a supersymmetric Yang-Mills theory with Nf hypermultiplets. Therefore with

the S1 compactification with the supersymmetry breaking boundary condition, the quark

mass terms are at least radiatively generated5 due to the lack of the chiral symmetry, even

when the bare masses for the quark fields are zero. Then we do not expect the pseudo

Nambu-Goldstone bosons. Despite of this, we might still expect that the mass of the pions

is smaller than the masses of other mesons and that the mass spectrum is close to the

meson spectrum in the actual QCD. With this in mind, we numerically computed the pion

and the ρ meson masses, and found that the ratio is around 0.8. This mass is clearly too

large as the real pions in QCD. We give more detailed calculations in appendix B.

3. D4-brane charge and pion mass

In the previous section, aiming to separate the D8-branes from the D4-branes, we studied

deformations of the probe D8-brane configuration. In this section we study a deformation

expressed by a non-trivial background of gauge fields on the flavor D8-branes. In particular

we introduce a D4-brane charge on the D8-branes. One motivation for introducing the D4-

brane charge is that the conservation law of it requires that the D8- and the D8-branes are

connected to each other, even in the flat spacetime background (i.e. in the weak coupling

regime of the QCD).6 From the view point of the effective field theory on the D8-branes,

this D4-brane is described by an instanton in an angular S4 of the worldvolume of the D8-

branes and thus breaks the chiral symmetry which is realized as a gauge symmetry on the

D8-branes. It may also be important that this deformation by introducing the D4-brane

charge on the S4 extends infinitely along the direction orthogonal to the color D4-branes

since it implies the explicit chiral symmetry breaking. From these perspectives, we expect

that the pions become massive and, as we will see, we indeed realize a phenomenologically

acceptable value of the pion mass.

The hadron physics in QCD is holographically captured by the probe D8-branes in the

D4-brane geometry in the Sakai-Sugimoto model. In the following, we take the small α′

limit keeping the magnitude of the field strength F so that α′F becomes small. Since the

5This system was first studied by the paper [10]. The quark field can be periodic along the S1 (the

scalar partner is then anti-periodic) in the field theoretical view point.
6This “thin throat” configuration of the D8-D8 is the one considered in [6] where a fundamental string

charge is introduced instead of our D4-brane charge.

– 5 –



J
H
E
P
0
6
(
2
0
0
7
)
0
2
0

gauge field appears in the DBI action and also in the Wess-Zumino term as sub-leading

order terms in α′, the back-reaction from the instanton to the shape of the D8-brane is sub-

leading in the above limit. Hence we will consider the same D8-brane configuration as [5] as

the leading order solution in the α′ expansion. With this D8-brane configuration, the action

of the gauge field is provided by the Yang-Mills action on the given D8-brane background.7

In particular we concentrate on the case with Nf = 2. In subsection 3.1 we start with a brief

review of a description of the probe D8-branes used in [5] and then introduce the instanton

solution. After that, in subsection 3.2, we analyze spectra of fluctuations of the gauge fields

around this instanton background, which corresponds to spectra of mesons appearing in

the strong coupling regime of QCD. We show that the instanton background successfully

gives non-zero masses to the pions. Finally in subsection 3.3 we give an interpretation of

the introduction of the instanton as a chiral perturbation in QCD.

3.1 Instanton on probe D8-brane

We are interested in probe D8-branes extended into the near horizon region of the non-

extremal D4-brane background [11, 4] given by

ds2 =

(
U

R

)3/2(
dx2

4 + f(U)dτ2
)

+

(
R

U

)3/2( dU2

f(U)
+ U2dΩ2

4

)
,

eφ =

(
U

R

)3/4

, F4 =
2πNc

V4
ǫ4, f(U) = 1 − U3

KK

U3
. (3.1)

Here dx2
4 = ηµνdxµdxν is the line element of the four-dimensional Minkowski spacetime and

dΩ2
4 = hijdθidθj is that of a unit S4. The four form ǫ4 and the value V4 are the volume form

and the volume of a unit S4. The constant gs is the string coupling and the parameter R

is related to the number Nc of the color D4-branes. The range of U is limited by U ≥ UKK

and the τ -direction is compactified on an S1 with the periodicity δτ = 4πR3/2/3U
1/2
KK .

For fermions, we impose the anti-periodic boundary condition along this S1. With the

periodicity δτ , τ − U plane is locally flat near U = UKK without any conical singularity.

The coordinates xµ and τ are the ones along the D4-brane world volume.

The probe D8-brane worldvolume is on a plane defined by a constant τ . This is

a solution since the metric does not depend on τ and the D8-branes are placed at the

anti-podal points on the S1, see figure 3. With use of a new coordinate z defined by

U3 = U3
z ≡ U3

KK + UKKz2, the induced metric on the D8-branes can be written down as

ds2
D8 = gMNdσMdσN =

(
Uz

R

)3/2

dx2
4 +

4

9

(
R

Uz

)3/2 UKK

Uz
dz2 +

(
R

Uz

)3/2

U2
z dΩ2

4. (3.2)

Here indices M and N run from 0 to 8.

As explained at the beginning of this section, we study the Yang-Mills action on the

above D8-brane solution in the small α′ limit:

SD8 = TD8(2πα′)2
∫

d9σe−φ
√

− det g
1

2
TrFMNFMN . (3.3)

7Note that on this given D8-brane background, the Wess-Zumino term becomes total derivative and do

not affect neither the instanton solution nor the spectrum analysis bellow.
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Here TD8 is the tension of a D8-brane and the field strength FMN is defined by FMN ≡
∂MAN−∂NAM +[AM , AN ]. (We use the convention in which the gauge fields AM = iAa

MT a

are anti-Hermitian matrices and the generators are normalized as TrT aT b = (1/2)δab .)

We introduce an instanton solution of this action and analyze its effects on the meson

spectrum. After the Kaluza-Klein (KK) reduction to four dimensions, this action describes

pions and vector mesons which are realized as KK modes of the gauge fields. The instanton

is introduced on the S4 and then the worldvolume of the induced D4-brane extends in the

non compact four dimensions xµ and also in the z-direction. The equations of motion for

the gauge fields can be solved by the ansatz

Aµ = 0, Az = 0, Ai = Ai(θ
j), (3.4)

with the self-dual conditions Fij = ∗Fij . Here ∗ is the Hodge dual on a unit S4. A solution

of this self-dual equation can be obtained from the SU(2) instanton solution on a flat

R4 [12]:

Ainst
a (X) = i

ǫabcX
cσb − X4σa

µ2 + ρ2
, (a = 1, 2, 3), Ainst

4 (X) = i
Xaσa

µ2 + ρ2
, (3.5)

by the stereographic projection:

X1 ≡ cot
(
θ1/2

)
cos(θ2), X2 ≡ cot

(
θ1/2

)
sin(θ2) cos(θ3),

X3 ≡ cot
(
θ1/2

)
sin(θ2) sin(θ3) cos(θ4), X4 ≡ cot

(
θ1/2

)
sin(θ2) sin(θ3) sin(θ4).

(3.6)

From the Jacobian of this transformation we have 16d4X = (ρ2 + 1)4dΩ4. The coordinate

systems {Xa,X4} and {θi} are the ones for a flat R4 and a unit S4 respectively, and the

coordinate ρ ≡ | ~X | is the radial coordinate in the R4. The matrices {σa} are the Pauli

matrices. The parameter µ controls the size of the instanton. The coordinates Xa, X4

and the parameter µ are all dimensionless in our notation. When we map the instanton

solution (3.5) with µ = 1 onto an S4, we have a homogeneous instanton [13] which satisfies

TrFijF
ij = constant. In this case, the combined solution (3.2) and (3.5) is not only the

solution of the above Yang-Mills theory, but also the solution of the original DBI action.

For µ 6= 1, the instanton number density TrFijF
ij becomes inhomogeneous and dependent

on θ1, or equivalently on ρ.

3.2 Meson spectrum

We now study the fluctuations of the gauge fields around the instanton background and

perform the KK reduction to four dimensions. In [5], only the lowest modes with respect

to the S4-coordinate dependence are considered, and mixing terms between Aµ (or Az)

with Ai vanish. In our case with an instanton, the mixing terms do not vanish. However

in this subsection, we assume that the mixing between fluctuations of Aµ or Az with that

of Ai is small, and concentrate on the effect of the instanton on the Aµ-Az system. We

discuss the mixing terms with Ai in appendix C.8

8In appendix C, we show that the lowest S4 KK modes of Ai do not mix with those of Aµ nor Az.

Although we have not evaluated the mixing terms including higher S4 KK modes we expect that these

terms are suppressed because of the small overlap between the wavefunctions.
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Plugging the induced metric (3.2) into the action (3.3) we obtain the four-dimensional

Lagrangian:

SD8 = T̃ (2πα′)2
∫

d4xL, (3.7)

L =

∫
dz

dΩ4

V4
2Tr

{
R3

4Uz
ηµνηρσFµρFνσ +

9

8

U3
z

UKK
ηµνFµzFνz

+
1

2
ηµνhijDiAµDjAν +

9

8

U4
z

R3UKK
hijDiAzDjAz + (terms with Ai)

}
.

(3.8)

Here T̃ = 2R3/2U
1/2
KKTD8V4/3, and DiAµ and DiAz are defined by DiAM ≡ ∂iAM +[

Ainst
i , AM

]
(where M = µ or z). We first perform the integration over the S4. Recalling

that the instanton number density depends only on ρ = | ~X|, we assume that the wave

functions of the lowest S4 KK modes of Aµ and Az depend only on ρ accordingly. Under

this assumption, we can write these lowest modes as follows:

Aµ(x, z,X) = Ãµ(x, z)ζ(ρ), Az(x, z,X) = Ãz(x, z)ζ(ρ). (3.9)

We define ζ(ρ) by the eigenvalue equation (with the lowest eigenvalue ǫ2)

−∂ρ

(
ρ3L∂ρζ

)
+ 8L

ρ5

(µ2 + ρ2)2
ζ = ρ3L2ǫ2ζ,

(
L ≡ 4(ρ2 + 1)−2

)
, (3.10)

and the normalization condition
∫
(dΩ4/V4)ζ(ρ)2 = 1. Now the mass for Ãµ (Ãz is similar)

is generated from the third term on the right hand side in (3.8) as
∫

dΩ4

V4
ηµνhijTrDiAµDjAν = −1

2
ǫ2ηµνÃa

µÃa
ν , (3.11)

where a in the upper index denotes SU(2) gauge index. Since the above mass term orig-

inates from the commutator, there would be no mass term for the U(1) part even if we

consider the U(2) Yang-Mills theory. There are also higher modes on the S4, which we do

not consider in this article. Performing the integration over the S4 and keeping only terms

quadratic in fluctuations, we obtain

L = −
∫

dz

{
R3

4Uz
ηµνηρσF̃ a

µρF̃
a
νσ +

9

8

U3
z

UKK
ηµν F̃ a

µzF̃
a
νz +

1

2
ǫ2ηµνÃa

µÃa
ν +

9

8

U4
z

R3UKK
ǫ2Ãa

zÃ
a
z

}
.

(3.12)

Note that if the second term on the left hand side of (3.10) does not exist, then ζ = constant

is the normalizable eigen function with ǫ = 0. If we consider an instanton with large µ,

then the second term on the left hand side of (3.10) is small compared to the other two

terms for a wide range of the variable ρ, and ǫ ∼ µ−1 as we will see later. Thus for large

µ, the third and the fourth terms in (3.12) can be considered as small perturbations added

to the model considered by Sakai and Sugimoto.

Next we perform the z-integral. Since we treat the instanton with µ−1 ≪ 1 as a small

perturbation, we may determine mode functions of Ãµ and Ãz along the same line as [5].

– 8 –
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Although with this choice of mode functions the KK modes are not diagonalized, we can

diagonalize them after the z-integral.

Let us first put Ãz = 0 and determine the mode functions ψm for Ãµ(x, z) =∑
m≥1 Ã

(m)
µ (x)ψm(z). The equation for the mode functions which diagonalize the La-

grangian is easily obtained:

−∂z

(
K∂zψm

)
+

4

9
ǫ2U−2

KKψm = λmU−2
KKK−1/3ψm

(
K ≡

(
Uz

UKK

)3
)

. (3.13)

We choose the normalization condition
∫

dzK−1/3ψmψn = δmn. As for the mode functions

φm for Ãz(x, z) =
∑

m≥0 Ã
(m)
z (x)φm(z), we choose

φm ≡ ∂zψm (m ≥ 1), φ0 ∝ 1

K
, (3.14)

as in [5], and in the following we denote the lowest mode as Ã
(0)
z ≡ ϕ. Using this mode

expansion, we obtain

L =−9U2
KK

8

[
K00(∂µϕa)2+

4

9
ǫ2M2

KKM00(ϕ
a)2

]
− R3

UKK

∑

m≥1

[
1

4

(
F̃ a,(m)

µν

)2
+

1

2
λmM2

KK

(
Ãa,(m)

µ

)2
]

− 9U2
KK

8

∑

m,n≥1

[
Kmn∂µÃa,(m)

z ∂µÃa,(n)
z +

4

9
ǫ2M2

KKMmnÃa,(m)
z Ãa,(n)

z

]

+
9

4
U2

KK

∑

m,n≥1

KmnÃa,(m)
µ ∂µÃa,(n)

z − ǫ2U2
KKM2

KK

∑

m≥1

M0mϕaÃa,(m)
z , (3.15)

with

Kmn ≡
∫

dzKφmφn, Mmn ≡
∫

dzK4/3φmφn. (3.16)

Here the four-dimensional Lorentz indices are contracted by the flat metric. The parameter

MKK is defined as MKK = 3U
1/2
KK/2R3/2. With the above choice of φm, the mixing terms

of ϕa with Ã
a,(m)
µ vanish, i.e., K0m = 0. The third line denotes the mixing of the KK

modes Ã
a,(m)
µ with Ã

a,(m)
z and that of ϕa with Ã

a,(m)
z . The mixing terms between Ã

a,(m)
µ

and Ã
a,(m)
z can be absorbed by the following field redefinition:

B̃a,(m)
µ ≡ Ãa,(m)

µ − U2
KK

λm

∑

n≥1

Kmn∂µÃa,(n)
z , (3.17)

and finally we have

L = − 9U2
KK

8

[
K00(∂µϕa)2 +

4

9
ǫ2M2

KKM00(ϕ
a)2

]

− R3

UKK

∑

m≥1

[
1

4

(
F̃ a,(m)

µν

)2
+

1

2
λmM2

KK

(
B̃a,(m)

µ

)2

]

− 9U2
KK

8

∑

m,n≥1

[
K ′

mn∂µÃa,(m)
z ∂µÃa,(n)

z +
4

9
ǫ2M2

KKMmnÃa,(m)
z Ãa,(n)

z

]

− ǫ2U2
KKM2

KK

∑

m≥1

M0mϕaÃa,(m)
z , (3.18)
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µ−1 0 0.02 0.05 1/13.0 0.1 0.2 1.0

ǫ 0 0.0488 0.120 0.180 0.230 0.423 1.41

mπ±,π0 (140,135) 0 36.4 88.7 132 167 285 624

mρ (776) (776) (776) (776) (776) (776) (776) (776)

ma1
(1230) 1189 1188 1186 1183 1179 1162 1046

mρ′ (1465) 1607 1607 1603 1596 1589 1550 1308

Table 1: The result of the numerical calculation of the meson spectrum. The unit is MeV. The

results for µ−1 = 0 corresponds to the massless QCD [5]. We have calculated matrices Kmn and

Mmn up to m = n = 5. We use ρ meson mass mρ = 776(MeV) as our input parameter.

with

K ′
mn = Kmn −

∑

p≥1

Kmp
U2

KK

λp
Kpn. (3.19)

Note that we still have mixing terms in the pion sector which we diagonalize after calcu-

lating matrices Kmn and Mmn. Since Kmn = Mmn = 0 for (m,n) = (even, odd), there are

no mixing terms between the odd modes and the even modes. We can see that, after the

limit ǫ → 0 is taken, this Lagrangian becomes the one for the pion and the vector mesons

in [5].

Adopting the same charge conjugation and parity assignment as in [5], the lowest mass

eigen mode of Az, i.e. ϕ with a small mixing with Ã
(m)
z , should be identified with the pion,

and the modes Ã
(m)
µ correspond to the vector mesons. The other modes in Az were ignored

in [5] and we follow this rule as we think of our deformation as a perturbation.9 We expect

that the mixing of ϕ with each mode Ã
(m)
z gets smaller as m becomes larger. We compute

the relevant matrices Kmn and Mmn up to level m = 5 and diagonalize the system. In

table 1 we summarize our final results of the pion and the vector meson masses. We have

used the actual observed ρ-meson mass mρ = 776 (MeV) as our input parameter. From

table 1, we understand that ǫ is of the order µ−1 (µ is the instanton size in R4), and that

turning on a small µ−1 successfully generates the small mass for the pions. Around µ = 13,

the ratio mρ/mπ comes close to the ratio of the actual observed masses. On the other

hand, the spectrum of the other vector mesons is not much affected compared with that of

Sakai and Sugimoto [5].

Although we have succeeded in deriving the correct value of the pion mass, it does not

necessarily mean that we have succeeded in adding non-zero quark masses to QCD. It is

worth noting that the instanton did not introduce a mass term for the possible Nambu-

Goldstone boson associated with the spontaneous symmetry breaking of the axial U(1)

part of the U(2)L × U(2)R chiral symmetry. This point may suggest that our deformation

differs from adding the quark masses. In the next subsection, we consider what kind of

perturbation corresponds to the introduction of the instanton from the view point of chiral

perturbation. There we will show that considering the property of the Ainst
i under the

9In this paper we take the gauge fixing condition in which the modes of Ai are eaten by the massive

modes of Aµ, on the other hand in [5], the modes of Az are eaten by the massive modes of Aµ.
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chiral symmetry transformation, a four fermi coupling is more natural than the quark

mass terms as a possible lowest perturbation to the massless QCD. However one may still

wonder whether there is a relation between the length of a stretched string and the quark

mass. We will discuss this point further in the appendix D by considering the distance

between the D4-branes and connected D8-D8 branes in the weak coupling regime, i.e., in

the flat spacetime background. Though in this paper we worked for the case of Nf = 2, for

Nf > 2 one can introduce multi-instanton configurations on S4 to reproduce the observed

structure of mass spectrum of π/K.

3.3 D4-branes as a chiral perturbation

Since the pion mass derived in the previous subsection is well below the QCD scale, we

should be able to understand the introduction of an instanton in terms of a chiral pertur-

bation. In this subsection we follow the discussion by Sakai and Sugimoto on the derivation

of the pion effective action and study the chiral perturbation. As studied in the previous

subsection, since the instanton does not affect the pion associated with the axial U(1)

breaking, we study a chiral perturbation concerning only the pions associated with the

chiral SU(Nf ) breaking.

We define a group element of the chiral symmetry transformation following the pa-

per [5]. In the previous subsection, we have considered fluctuations of the gauge fields

which vanish at z → ±∞. The gauge transformation with an element g(x, z, θ) ∈ SU(Nf )

which approaches a constant in the limit z → ±∞ does not change this asymptotic behav-

ior of the gauge fields and is a transformation of residual gauge symmetry. The constant

of this transformation is identified as an element of the chiral symmetry transformation

(g+, g−) ∈ SU(Nf )L × SU(Nf )R, g± ≡ limz→±∞ g(x, z, θ). If we introduce the following

field U(x, θ):

U(x, θ) ≡ Pexp

{
−

∫ ∞

−∞

dzAz(x, z, θ)

}
, (3.20)

it is transformed as U → g+Ug−1
− under the chiral transformation. For our later convenience

we further introduce

ξ−1
± (x, θ) ≡ Pexp

{
−

∫ ±∞

0
dz′Az(x, z′, θ)

}
, A±

i (θ) ≡ Ainst
i (x, z = ±∞, θ) = Ainst

i (θ).

(3.21)

Then we have an expression U(x, θ) = ξ−1
+ (x, θ)ξ−(x, θ) and the transformation rules of ξ±

and A±
i under the residual gauge symmetry above are as follows:

ξ+ → h(x, θ)ξ+g−1
+ , ξ− → h(x, θ)ξ−g−1

− , A+
i → g+A+

i g−1
+ , A−

i → g−A−
i g−1

− , (3.22)

with h(x, θ) ≡ g(x, z = 0, θ). Note that we can take h(x, θ) and g± as independent group

elements since g± does not fix the gauge transformation parameter at finite z. Thus we

can choose the gauge ξ− = 1 (and therefore ξ−1
+ = U) by using the degree of freedom of

h(x, θ).10

10Note that none of the group elements g±, h(x, θ) nor ξ±(x, θ) have nontrivial winding on the S4.
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We move to the Az = 0 gauge using the gauge transformation by the group element

Pexp(−
∫ z
0 Azdz′). Then the asymptotic behavior of the gauge fields at z → ±∞ now

becomes

Aµ(x, z, θ) → ξ±(x, θ)∂µξ−1
± (x, θ), Ai(x, z, θ) → ξ±(x, θ)(A±

i (θ) + ∂i)ξ
−1
± (x, θ),(3.23)

respectively. From this behavior and the above mentioned gauge choice, ξ− = 1 and

ξ−1
+ = U , we can expand the fluctuations with respect to the mode functions of z-direction

as follows:

Aµ(x, z, θ) = U−1(x, θ)∂µU(x, θ)ψ+(z) + higher modes, (3.24)

Ai(x, z, θ) = U−1(x, θ)(A+
i (θ) + ∂i)U(x, θ)ψ̃+(z) + A−

i (θ)ψ̃−(z) + higher modes. (3.25)

Here, since we treat the instanton as a perturbation, we take ψ± and ψ̃± as the zero

modes for the case of the absence of the instanton background. The explicit forms of these

functions can be read from the action:

ψ±(z) =
1

2

(
1 ± C−1(z)

C−1(∞)

)
, ψ̃±(z) =

1

2

(
1 ±

C−4/3(z)

C−4/3(∞)

)
, Cn(z) =

∫ z

0
dzKn. (3.26)

In the following, we will neglect the higher modes in the z-space in (3.24) and (3.25), since

we are interested only in the pion fields. Using (3.24) and (3.25), the field strengths are

computed as

Fµν = [U−1∂µU,U−1∂νU ]ψ+(ψ+ − 1), (3.27)

Fzµ = U−1∂µU∂zψ+, (3.28)

Fµi = [U−1∂µU,U−1DiU ]ψ+ψ̃+ + U−1D+
i

(
∂µUU−1

)
Uψ̃+ − D−

i

(
U−1∂µU

)
ψ+, (3.29)

Fzi = U−1DiU∂zψ̃+, (3.30)

Fij = [U−1DiU,U−1DjU ]ψ̃+(ψ̃+ − 1) + U−1F+
ij Uψ̃+ + F−

ij ψ̃−. (3.31)

Here the covariant derivatives and the field strengths are defined by D±
i ∗ = ∂i ∗ +[A±

i , ∗],
DiU = ∂iU + A+

i U − UA−
i and F±

ij = ∂iA
±
j − ∂jA

±
i + [A±

i , A±
j ]. Let us substitute these

expressions into the D8-brane action:

SD8 =T̃ (2πα′)2
∫

d4xdz
dΩ4

V4
2Tr

[
R3

4Uz
ηµσηντFµνFστ +

9U3
z

8UKK
ηµνFµzFνz

+
1

2
ηµνhijFµiFνj +

9U4
z

8R3UKK
hijFziFzj +

Uz

4R3
hikhjlFijFkl

]
. (3.32)

Among the terms induced by the instanton, the F 2
µi terms give kinetic terms and interac-

tions, and the F 2
zi and the F 2

ij terms induce the pion mass and interactions. Substituting
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the expressions of F written in terms of U , we obtain the following action:

SD8 = T̃ (2πα′)2
∫

d4xdz
dΩ4

V4
2Tr

[
R3

4Uz
[U−1∂µU,U−1∂νU ]2ψ2

+(ψ+ − 1)2

+
9U3

z

8UKK
(U−1∂µU)2(∂zψ+)2 +

9U4
z

8R3UKK
(U−1DiU)2(∂zψ̃+)2

+
1

2

(
[U−1∂µU,U−1DiU ]ψ+ψ̃+ + U−1D+

i

(
∂µUU−1

)
Uψ̃+ − D−

i

(
U−1∂µU

)
ψ+

)2

+
Uz

4R3

(
[U−1DiU,U−1DjU ]ψ̃+(ψ̃+ − 1) + U−1F+

ij Uψ̃+ + F−
ij ψ̃−

)2
]
. (3.33)

Here the indices µ, ν and i are contracted by ηµν and hij , respectively.

Let us consider the expansion of the U(x, θ) field using the mode functions for the case

without the instanton. The lowest mode in such expansion is just constant and thus

U(x, θ) = exp
(
2iπ(x)/fπ + higher S4 KK modes

)
. (3.34)

Here π(x) = πa(x)T a is the pion field, which we choose to be Hermitian. If we neglect the

higher modes in this expression as U = U(x) = exp(2iπ(x)/fπ) and substitute it into (3.33),

we have the following four-dimensional chiral Lagrangian:

L =
f2

π

4
Tr(U−1∂µU)2 + C

∫
dΩ4

V4
Tr

(
U−1A+

i UA−
i

)
+ O(µ−4). (3.35)

Here fπ and C are given by

f2
π ≡ T̃ (2πα′)2

∫
dz

9U3
z

UKK

(
∂zψ+

)2
, C ≡ −T̃ (2πα′)2

∫
dz

9U4
z

2R3UKK
(∂zψ̃+)2. (3.36)

In (3.35), we show terms of leading order in chiral perturbation theory. In the previous

subsection we saw that the magnitude of the effect of the instanton with the size µ can be

estimated as Di ∼ ǫ ∼ µ−1 (see (3.11)). Hence we can treat Di ∼ D±
i ∼ µ−1 and F±

ij ∼ µ−2.

In addition, we took into account the fact that usually in chiral perturbation theories one

counts the dimension of the momentum ∂µ in the same manner, ∂µ ∼ mπ ∼ µ−1MKK.

The pion mass term, i.e. the second term in (3.35) does not have the same form as

the lowest mass term for pions in the chiral perturbation with non-zero quark masses,

Uχ + χ†U−1 where χ is related to the bare quark masses. The form (3.35) of the chiral

Lagrangian suggests that our deformation corresponds to turning on (an infinite number

of) external fields A±
i (θ) in the QCD. From the transformation laws under the chiral

transformation in (3.22), we can read out possible lowest terms of the perturbation to the

QCD action:

L = LQCD + Gap
bq q̄Laq

q
R q̄Rpq

b
L + h.c., (3.37)

where a, b (p, q) are the indices of SU(Nf )L (SU(Nf )R) and qL (qR) is the left-handed (the

right-handed) quark field. The tensor Gap
bq is related to the two sources A+

i and A−
i . From

the symmetry arguments we can only guess possible terms with which the chiral symmetry
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is explicitly broken and in particular A±
i do not couple left- and right- handed quarks in a

bilinear manner.

When all the masses for the quarks are the same, the masses of the pions are equal

to each other, because SU(Nf )V is unbroken. In our case, although both the sources A+
i

and A−
i break all the chiral symmetries explicitly because of (3.22), the masses of the

pions in (3.35) are the same. This happens due to the fact that the BPST instanton has

a symmetric structure among the gauge indices a and the spacetime coordinates i and the

contribution of instanton becomes gauge-blind after contracting the Lorentz indices i.

Before ending this subsection we will give some remarks. In the previous subsection,

we obtained the lowest S4 mode, ζ(ρ), in the presence of instanton. If we use this function

in expanding U(x, θ) as:

U(x, θ) = exp
(
2iπ(x)ζ(ρ)/f̃π + higher S4 KK modes

)
, (3.38)

then the Lagrangian (3.33) does not reduce to the four-dimensional chiral Lagrangian

written in terms of U , even if we neglect the higher S4 KK modes. Inserting (3.38)

into (3.33) and expanding it in terms of π(x), we have

L = −1

2
(∂µπa)2 − 1

2
m2

π(πa)2 +
1

4ẽ2f̃2
π

([∂µπ, ∂νπ]a)2 + · · · . (3.39)

Here the parameters are defined as follows:

f̃2
π ≡ T̃ (2πα′)2

∫
dz

{
9U3

z

UKK

(
∂zψ+

)2
+ 4ǫ2

(
ψ̃+ − ψ+

)2
}

, (3.40)

f̃2
π

2ẽ2
≡ T̃ (2πα′)2

∫
dz

8R3

Uz
ψ2

+(ψ+ − 1)2
∫

dΩ4

V4
ζ4, (3.41)

m2
π ≡ ǫ2 T̃ (2πα′)2

f̃2
π

∫
dz

9U4
z

R3UKK

(
∂zψ̃+

)2
. (3.42)

In deriving these, we have used the eigenvalue equation and the normalization condition

for ζ which we used in the previous subsection. It can be checked that the pion mass (3.42)

reproduces the values which are consistent with those in the previous subsection for large

µ.

The final point is related with the tachyon field. As discussed in [14], a tachyon field,

which is the lowest mode of a string stretching between D8 and D8, couples with the quark

bilinear, and if it develops a vacuum expectation value (VEV), the quark mass terms will

be generated. The tachyon field belongs to the bi-fundamental representation of the chiral

symmetry group SU(Nf )L×SU(Nf )R. Inspired by this, let us add a complex scalar field T

on the D8-branes which belongs to a fundamental representation of the group of the gauge

symmetry on the D8-branes, and let it develop a VEV 〈T 〉. Following the same procedure

the tachyon field will be expanded as

T (x, z, θ) = ξ+(x, θ)T+Ψ+(z) + ξ−(x, θ)T−Ψ−(z), T+ = T− = 〈T 〉, (3.43)
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with non-normalizable modes Ψ± (where Ψ− ≡ 1 − Ψ+, Ψ+(z = ∞) = 1 and Ψ+(z =

−∞) = 0). The lowest contribution to the chiral Lagrangian comes from the kinetic term

gzz |∂zT |2,

TD8

∫
d9σe−φ

√
− det ggzzTr|U−1T+ − T−|2

(
∂zΨ+

)2 ∝
∫

d4x Tr[Uχ + χ†U−1], (3.44)

with χ = T−T †
+. This is exactly the expected form of the pion mass term induced by the

non-zero quark masses in the chiral perturbation theory. The actual tachyon mass profile is

complicated and should depend on the spacetime coordinates in a curved geometry (see [9]

for a profile of fundamental strings in the D4-brane geometry).

4. Conclusion and discussion

In this paper we have studied deformations of the holographic QCD model considered by

Sakai and Sugimoto, in order to introduce explicit chiral symmetry breaking and non-zero

pion mass. In the Sakai-Sugimoto model, the chiral symmetry is realized by the D-brane

configuration in the weak coupling regime; flavor D8- and D8-branes are separated from

each other. So we have considered deformations of the D8- and D8-branes to connect them

in the flat spacetime.

In section 2, we have considered the configuration in which the D8- and D8-branes

are connected by a throat and color D4-branes are placed in the throat. First we placed

the D4-branes at the center of the throat. Because the size of the throat is of the same

order as the asymptotic distance between the D8- and D8-branes, they do not reach the

near horizon region of the D4-brane background. Without taking the near horizon limit,

we have studied the spectrum of the gauge fields and we still found a massless pion. Of

course it is possible that without taking the near horizon limit, this model just fails to

capture the strong dynamics of the dual QCD. In order to understand this point further,

we took a certain limit of this brane configuration in which the system reduces to the

simpler one; We placed the D4-branes close to the D8-branes and magnified around a

point on an angular S4 of the D8-brane worldvolume. Then the system reduces to the

flat D4- and the flat D8-branes located parallel to each other. Because the D8-branes can

be located arbitrarily close to the D4-branes, we can take the near horizon limit of the

D4-brane background keeping the D8-branes in the near horizon region. In this case, we

found that the pions successfully acquire non-zero mass. However the minimum value of

the pion mass we obtained is too large; about 0.8 times the ρ meson mass. This model has

no parameter which can be tuned to take the massless pion limit.

In order to construct a model which reproduces the small pion mass, we considered

a different deformation in section 3. We introduced an instanton background on the D8-

branes considered by Sakai and Sugimoto. From the point of view of the D-brane configu-

ration, the instanton charge corresponds to a smeared D4-brane charge, and the existence

of this charge assures that the D8- and the D8-branes are connected to each other, even in

the flat spacetime. Studying the spectrum of the fluctuations, we found a non-zero pion

mass which is tunable using the parameter µ, the size of the instanton, and realized the
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observed value of the pion mass. We have found also that the vector-meson spectrum is

not significantly affected. In section 3.3, we studied a chiral perturbation for QCD which

corresponds to introducing the instanton background. Using the mode expansions without

taking into account the perturbations induced by the instanton, we have derived the four-

dimensional chiral Lagrangian. We also discussed the corresponding perturbations to the

QCD Lagrangian. A possible lowest candidate for the perturbation is a four-Fermi cou-

pling, not the quark mass term. Also the fact that the mass term of the Nambu-Goldstone

boson for the axial U(1) part has not been generated by the instanton suggests that our

deformation differs from adding the non-zero quark mass. Using the lowest S4 mode in the

presence of the instanton, we have obtained the pion masses which are consistent with the

values in the subsection 3.2.

A final remark is a discussion on the throat solution in DBI action and the quark

mass. If we assume that the DBI action is reliable even for the small D8 throat considered

in appendix D, then the possible quark mass estimated from the length of an open string

stretching between the D4- and D8-branes is finite. Although the D-brane picture may

break down for the thin D8 throat with the radius of the string length, the throat can be

thought as the result of partial tachyon condensation [15]. The chiral symmetry is broken

due to the condensation and the quark mass terms are expected to be induced since the

tachyon couples with quarks bilinearly (see [16] for a recent discussion along this direction).

It is deserved to understand more clearly the size of throat in the flat space in terms of

weak coupling physics and it is important to understand how to implement this tachyon

field into the probe D8-brane theory. We leave this issue as a future problem.
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A. D8 probe in the D4 geometry

In this appendix, we discuss the D8-brane probe solutions in the full non-extremal D4-
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brane geometry [17] compactified on an S1 without taking the near horizon limit. We

show that there are a set of solutions which have the same asymptotic behavior. The first

solution is the one used by Sakai and Sugimoto and the second solution corresponds to the

configuration of D8- and D8- branes connected to each other by a throat.

The non-extremal D4-brane geometry is given by

ds2 =

(
U3

R3 + U3

)1/2

(dx2
4 + f(U)dτ2) +

(
U3

R3 + U3

)−1/2 (
dU2

f(U)
+ U2dΩ2

4

)
, (A.1)

eφ =

(
U3

R3 + U3

)1/4

, F4 =
2πNc

V4
ǫ4, f(U) = 1 − U3

KK

U3
. (A.2)

This geometry is regular if and only if the compact τ direction has a periodicity τ ∼ τ +δτ ,

δτ = 4πR3/2/3U
1/2
KK . The near horizon geometry (3.1) is obtained by taking the small U/R

limit.

We place a probe D8-brane so that its configuration in τ -U plane is given by τ = τ(U)

or equivalently by U = U(τ). With this ansatz, the relevant part of the action is

SD8 = − TD8

∫
d9σe−φ

√
− det g ∝

∫
dτU4

√
f(U) +

R3 + U3

U3

U ′2

f(U)
. (A.3)

Since the action does not depend on τ explicitly, there is a conserved quantity:

U4f(U)√
f(U) + R3+U3

U3

U ′2

f(U)

= U4
0

√
f(U0), (A.4)

where U0 = U(τ0) ≥ UKK is the point where U ′(τ0) = 0. We can easily solve this equation

and obtain

τ(U) − τ0 =

∫ U

U0

dU
1

f(U)

√
R3 + U3

U3

U8
0 f(U0)

U8f(U) − U8
0 f(U0)

. (A.5)

It is easy to see that as U goes to infinity τ(U) goes to a constant which gives the asymptotic

distance between the D8- and the D8-branes, L = 2τ(U → ∞) modulo δτ . When U0 =

UKK, L = δτ/2 and this is the solution considered in [5]. As the difference U0 − UKK

gets larger, L first decreases, but around a critical value U0 − UKK ∼ 7 (for R = 10 and

UKK = 1), L starts increasing and it continues to increase after passing this value. So,

in fact, we found two solutions for fixed δτ . For example, for L = δτ/2, U0 = UKK is an

obvious solution found before, and the second solution with U0 ∼ UKK + 70 for R = 10

and UKK = 1 corresponds to the configuration of the D8- and D8- branes connected with

each other by a throat. (The other solutions with L = δτ/2 have 2τ(U → ∞) > δτ in

the covering space of the S1, and thus these solutions correspond to the probe D8-branes

wrapping more than once around the S1 direction.) Since the ratio U/R is small in the

near horizon region, the second solution exists outside of the near horizon region, and thus

it disappears when we take the near horizon limit.

We can now study whether the pions become massive. Although we do not take the

near horizon limit, we simply apply the AdS/CFT correspondence for studying if we have
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Nambu-Goldstone bosons. We check it by studying the normalizability of the zero mode in

the U -direction (or z-direction in the main text) of the gauge fields on the D8-brane since

this mode would be identified as the pion. If it is normalizable, the zero mode is the pion.

If it is not instead, there is no Nambu-Goldstone boson. In the latter case, the situation

may be consistent with the pion being massive because of the explicit chiral symmetry

breaking.

The relevant part of the action for the fluctuations of the gauge fields on the D8-brane

is

S = − TD8(2πα′)2
∫

d9σe−φ
√
− det g

1

4
gMNgPQFMP FNQ

∼−
∫

d4xdUU4

(
U3

R3 + U3

)−1/2
√

U8

U8f(U) − U8
0 f(U0)

×
[(

U3

R3 + U3

)−1

ηµρηνσFµνFρσ + 2
U8f(U) − U8

0 f(U0)

U8
ηµνFµUFνU

]
, (A.6)

where ηµν is the four-dimensional Minkowski metric. Then the zero mode in AU is given

by

AU (x,U) = π(x)φ0(U), φ0(U) ∝
(

U3

R3 + U3

)1/2
1√

U8f(U) − U8
0 f(U0)

, (A.7)

and it is easy to see that the zero mode is normalizable:

∫ ∞

U0

dU

(
U3

R3 + U3

)−1/2 √
U8f(U) − U8

0 f(U0)φ0(U)2 < ∞. (A.8)

Thus we always have a massless Nambu-Goldstone boson for arbitrary U0. Therefore even

though the D8- and D8-branes are connected by a throat in the flat spacetime, the pion is

still massless.

B. D8-brane parallel to D4-brane

In this appendix, we compute the pion mass in the D-brane configuration in which a

D8-brane is placed parallel to the color D4-branes. The effective theory is a QCD with

massive quarks. Although the masses of the quarks are roughly of the same order as the

compactification scale, we may still expect that the pion masses are suppressed compared

with the other meson masses.

For our later convenience, we introduce a new coordinate r defined by

r =

(√
U3 +

√
U3 − U3

KK

2

)2/3

, U =

(
r3/2 +

U3
KK

4r3/2

)2/3

, (B.1)

and the near horizon limit of the D4-brane geometry is

ds2 =

(
U

R

)3/2

(dx2
4 + f(U)dτ2) +

(
R

U

)3/2 U2

r2
dX2

5 , (B.2)

dX2
5 =dy2 + y2dΩ2

3 + dw2, r2 = y2 + w2. (B.3)

– 18 –



J
H
E
P
0
6
(
2
0
0
7
)
0
2
0

We introduce the D8-brane in such a way that it is parallel to the D4-branes and thus it

is localized in the w-direction. The position in the w-direction becomes a function of the

y coordinate, w = w(y). Then the induced metric and the equation of motion for w(y)

computed from Dirac-Born-Infeld action for the D8-brane probe are given by

ds2 =

(
U

R

)3/2

(dx2
4 + f(U)dτ2) +

(
R

U

)3/2 U2

r2
(dy2 + y2dΩ2

3 + w′(y)2dy2), (B.4)

w′′(y) =(1 + w′(y)2)


−3

y
w′(y) +

3U3
KK

4r5

(
w(y) − yw′(y)

)

 1

1 − U3

KK

4r3

− 5

3

1

1 +
U3

KK

4r3





 .

(B.5)

The solution w(y) of this equation satisfies the asymptotic behavior

w(y) ∼ m +
ν(m)

y2
, (B.6)

where ν(m) is determined so that the solution w(y) is regular everywhere, and m is a

parameter which describes the asymptotic distance between the D4- and D8-branes. Since

the quark masses receive corrections through integrating out massive Kaluza-Klein modes

along the τ direction, there is no identification that m is the mass of the quark (at the

compactification scale) and ν(m) is proportional to the value of the chiral condensate.

The fluctuations in Aµ on the D8-branes are identified as vector mesons in QCD and

so the lowest mode is identified as the ρ meson. We can safely take the Ay = 0 gauge

since there is no scalar zero mode among the fluctuations of Aµ. Then the lowest Kaluza-

Klein mode in the fluctuation Aτ can be identified as the massive pion. The action for

fluctuations on the D8-brane at the quadratic level is given by

S = − TD8(2πα′)2
∫

d9σe−φ
√

− det g
1

4
gMNgPQFMP FNQ

∝−
∫

dy

(
1 − U3

KK

4r3

)(
1 +

U3
KK

4r3

)5/3

y3
√

1 + w′2

{(
R

U

)3

ηµρηντFµνFρτ

+
2r2

U2(1 + w′2)
ηµνFµyFνy +

2R3

U3f(U)
ηµνFµτFντ +

2r2

f(U)U2(1 + w′2)
F 2

yτ

}
, (B.7)

where we have considered only the S3-independent modes and omitted the S3 components

of the gauge fields. Performing the fluctuation analysis we have numerically obtained

the result that the mass ratio mπ/mρ is about 0.8. In the numerical calculation, we have

chosen the asymptotic distance between the D4- and the D8-branes such that the D8-brane

is located close to the D4-branes, but does not reach the point U = UKK. The reason for

this choice is the following; If the D8-brane is far away from the D4-branes the bare quark

mass is large, on the other hand if the D8-brane intersects with the D4-branes, a large

correction to the quark mass is expected. In fact the ratio mπ/mρ becomes the smallest

value for this choice. Therefore the pion mass is much larger than the actual value in the

real QCD.
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C. Mixing between lowest S4 KK modes of Ai with those of Aν and Az

In this appendix, we discuss the mixing terms between the lowest S4 KK modes of the

fluctuations Aν and Az with those of Ai in the case with the instanton background.

The following mixing terms arise from the terms F 2
νi and F 2

zi in the Lagrangian:

F 2
νi :

∫
d4XL(ρ)TrDαAν∂νAα, F 2

zi :

∫
d4XL(ρ)TrDαAz∂zAα, (C.1)

where DαA = ∂αA + [Ainst
α , A] and L(ρ) = 4(ρ2 + 1)−2. The index α = 1, . . . , 4 is that for

the coordinates Xα of the R4 introduced in subsection 3.1 and ρ = |X| as before. The

lowest modes of the fluctuations Aα are given by the moduli Gtrβ
α (X) and Gsize

α (X) of the

instanton which are the translation of the instanton and the change of the instanton size

respectively.11 Using these, the lowest modes of Aα are given by

Aα(x, z,X) =fβ(x, z)Gtrβ
α (X) + fsize(x, z)Gsize

α (X). (C.2)

The explicit forms of the translational moduli Gtrβ
α and the size modulus Gsize

α are as follows:

Gtrβ
α (X) ≡ ∂

∂Xβ
Ainst

α (X) = i
−ǫαβcσc + δα4σβ − δβ4σα

µ2 + ρ2
− 2Xβ

µ2 + ρ2
Ainst

α (X), (C.3)

Gsize
α (X) ≡ ∂

∂µ
Ainst

α (X) = − 2µ

µ2 + ρ2
Ainst

α (X). (C.4)

Here the parameter µ controls the size of the instanton. The totally antisymmetric tensor

ǫαβγ is defined by ǫ123 = 1 and ǫ4αβ = 0 and σ4 = 0. Note that the translational moduli

Gtrβ
α (X) are even under the four-dimensional parity transformation {Xγ} → {−Xγ}. Then

the mixing term in F 2
νi which includes ∂νfβ(x, z) becomes

∫
d4XL(ρ)Tr

[
Gtrβ

α (X)

{
Ãν(x, z)

Xα

ρ
∂ρζ(ρ) +

[
Ainst

α , Ãν(x, z)ζ(ρ)
]}]

, (C.5)

where the lowest fluctuation modes of Aν are given by Aν(x, z,X) = Ãν(x, z)ζ(ρ) as in

subsection 3.2. Since the inside of the square bracket is odd under the parity transformation

{Xγ} → {−Xγ}, this mixing term vanishes after the integration over the R4. On the other

hand, the mixing term in F 2
νi which includes ∂νfsize(x, z) becomes

∫
d4XL(ρ)Tr

[
Gsize

α (X)

{
Ãν(x, z)

Xα

ρ
∂ρζ(ρ) +

[
Ainst

α , Ãν(x, z)ζ(ρ)
]}]

, (C.6)

and it vanishes since the size modulus Gsize
α (X) is proportional to the instanton Ainst

α .

Similarly we can also show that the mixing terms from Fzi vanish. Thus there is no mixing

between the lowest S4 KK modes of the fluctuations Aν and Az with those of Ai.

11The other moduli corresponding to gauge directions can be absorbed by appropriate gauge transforma-

tions and field redefinitions.
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D. Small throat solution in Dirac-Born-Infeld action

Our original motivation for studying the instanton background was, as is mentioned in

the introduction of section 3, that the instanton charge would make the D8-brane and

the anti-D8-brane to connect even in the flat spacetime background, giving the explicit

breaking of the chiral symmetry. In this appendix, we employ a Dirac-Born-Infeld action

as an effective action of the D8-branes in the flat spacetime background, and estimate the

throat radius of a classical solution of it when the D4-brane charge (the instanton on the

S4) is introduced. This would correspond to computing the quark mass, from the length

of the string stretching between the D8 throat surface and the Nc D4-branes. One should

note that the DBI approximation employed here is not a good low energy approximation,

especially around the thin throat in the flat spacetime background. It is possible that the

quark mass may not be generated from the throat at all, as is in fact indicated in our results

of the chiral perturbation. Nevertheless, it is instructive to study, in the weak coupling

regime, what would happen to the D8-branes when the D4-brane charge is introduced, by

using a DBI action which is at least the best available starting-point in our knowledge.

Our situation is similar to the one in [13] where a set of N D1-branes ending on n D5-

branes is obtained as a deformation of the surface of the D5-branes. We take T-dualities

three times along the transverse directions, and obtain our brane configuration of the N

D4-branes ending on the n D8-branes. In this paper we took N = 1 and n = 2 (one

instanton on the S4 in the SU(2) Yang-Mills).

The difference from [13] is only that [13] treats infinitely long D4-branes while in our

case the D4-brane is ending on the D8-branes. In [6], two throat solutions connecting the

D8- and the D8-branes are obtained, one has the throat whose radius is almost equal to

the D8-D8 distance, while the other has a small radius of the size of string length. What

we are interested in is the latter one, which exists only when one introduces the D4-brane

charge on the D8-branes (in [6] fundamental string charge is introduced, instead). Let us

construct this latter type of the solution in our situation.

Following (43) and (45) of [13], the equation of motion for the scalar field τ of the

D8-branes in the flat background spacetime is written as

dτ/dU√
1 + (dτ/dU)2

=
(2πα′)2/B̃

nU4 + (3N/2)(2πα′)2
. (D.1)

Here we assumed that the N instantons on the D8-brane surface are homogeneous on the

S4 (corresponding to µ = 1 in this paper). Note that we use the same U as the radial

coordinate of the D8-branes, in the flat spacetime. B̃ is an integration constant. The

throat radius Uthroat can be defined where the derivative dτ/dU diverges, that means that

the above equation is equal to the unity.

The distance between the D8-branes and the D8-branes is in our case half the circum-

ference of the S1, δτ/2. Integrating the above equation, we obtain

δτ

2
= 2

∫ ∞

Uthroat

dU
(
B̃2

(
nU4/(2πα′)2 + 3N/2

)2 − 1
)−1/2

. (D.2)
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This integral equation determines the relation between Uthroat and the integration constant

B̃. We evaluate this in the low energy limit α′ → 0 while δτ fixed. This is in fact the limit

similar to the one taken in [6], and we apply their choice of the integration constant so

that we have the small radius of the throat:

B̃ =
2

3N
(1 − ǫ), ǫ → +0(∝ α′2). (D.3)

Then, up to overall numerical constants, we obtain

Uthroat ∼ (α′)1/2ǫ1/4, δτ ∼ (α′)1/2ǫ−1/4. (D.4)

Therefore for a fixed δτ and in the low energy limit α′ → 0, the throat radius is estimated

as

Uthroat ∼ α′/δτ. (D.5)

This provides the naive evaluation of the energy of the lowest excitation of the string

stretched between the throat surface and the throat center (the Nc D4-branes), which is

expected to be the quark mass, as

mquark ∼ Uthroatα
′−1 ∼ 1/δτ. (D.6)

Here the string tension is proportional to α
′−1. We find that the quark mass is finite in

the low energy limit α′ → 0.

In order to see whether the Gell-Mann–Oakes–Renner (GOR) relation m2
π = Bmq

(where B is related to the quark condensate) is satisfied, let us evaluate the µ dependence

of the quark mass from this thin throat picture quantitatively. When we deform the

instanton distribution away from the homogeneous one, it is expected that the spherical

cross-section S4 is deformed in the analysis in the flat spacetime background.12 Thus the

effective length of the stretched string is expected to be shortened by this deformation, and

the quark mass may become lighter. To see this concretely, we consider the case with two

instantons on the S4; one on the north pole and the other on the south pole, in order to

maintain the parity symmetry θ1 ↔ π− θ1 on the deformed shape of the S4, for simplicity.

The size of each instanton is given by 1/µ. For large µ, the instanton density at the poles

is F 2 ∼ µ4 while that around the equator is F 2 ∼ 1/µ4. To maintain the force balance on

the S4, the D8-brane shape should be deformed in such a way that the out-bound force

generated by this instanton density is canceled by the in-bound force given by the D8-brane

energy density per unit angular volume on the deformed S4. Due to the parity symmetry,

we deform the S4 to an ellipsoid whose major axis is generated by a multiplication by a

factor α while its minor is by a factor β. Then, to keep the tension balance, one would need

to require α ∼ µ and β ∼ 1/µ, because of the instanton energy density. The minor axis has

12In the strong coupling regime, the shape of the S4 is deformed, but this is an effect of higher order in

α′ and thus we have neglected it. The shape of the D8-brane is non-singular even in the α′
→ 0 limit. On

the other hand, in the weak coupling regime (the flat spacetime), the shape becomes singular in the α′
→ 0

limit (the angular S4 shrinks), thus the deformation should be taken into account from the first place.
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the length proportional to 1/µ, so the quark mass is expected to scale as mq ∼ 1/(µδτ).

We find that this scaling is different from what we obtained in this paper, mπ ∝ ǫ ∝ 1/µ,

if we apply the GOR relation.

Our estimation of the deformation of the S4 would have been too naive. Furthermore,

we have assumed that the quark mass can be given just by the shortest radius of the throat,

which would be incorrect, since the D8-brane surface is highly curved.
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